State Causality and Adaptive Covariance Decomposition Based Time Series Forecasting.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Time series forecasting is a very vital research topic. The scale of time series in numerous industries has risen considerably in recent years as a result of the advancement of information technology. However, the existing algorithms pay little attention to generating large-scale time series. This article designs a state causality and adaptive covariance decomposition-based time series forecasting method (SCACD). As an observation sequence, the majority of time series is generated under the influence of hidden states. First, SCACD builds neural networks to adaptively estimate the mean and covariance matrix of latent variables; Then, SCACD employs causal convolution to forecast the distribution of future latent variables; Lastly, to avoid loss of information, SCACD applies a sampling approach based on Cholesky decomposition to generate latent variables and observation sequences. Compared to existing outstanding time series prediction models on six real datasets, the model can achieve long-term forecasting while also being lighter, and the forecasting accuracy is improved in the great majority of the prediction tasks.

Authors

  • Jince Wang
    College of Computer Science, Sichuan University, Chengdu 610065, China.
  • Zibo He
    College of Computer Science, Sichuan University, Chengdu 610065, China.
  • Tianyu Geng
    College of Computer Science, Sichuan University, Chengdu 610065, China.
  • Feihu Huang
    College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA. Electronic address: huangfeihu2018@gmail.com.
  • Pu Gong
    College of Innovation and Entrepreneurship, Shijiazhuang Institute of Technology, Shijiazhuang 050228, China.
  • Peiyu Yi
    College of Computer Science, Sichuan University, Chengdu 610065, China.
  • Jian Peng
    Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, USA.