A systematic assessment of deep learning methods for drug response prediction: from in vitro to clinical applications.

Journal: Briefings in bioinformatics
Published Date:

Abstract

Drug response prediction is an important problem in personalized cancer therapy. Among various newly developed models, significant improvement in prediction performance has been reported using deep learning methods. However, systematic comparisons of deep learning methods, especially of the transferability from preclinical models to clinical cohorts, are currently lacking. To provide a more rigorous assessment, the performance of six representative deep learning methods for drug response prediction using nine evaluation metrics, including the overall prediction accuracy, predictability of each drug, potential associated factors and transferability to clinical cohorts, in multiple application scenarios was benchmarked. Most methods show promising prediction within cell line datasets, and TGSA, with its lower time cost and better performance, is recommended. Although the performance metrics decrease when applying models trained on cell lines to patients, a certain amount of power to distinguish clinical response on some drugs can be maintained using CRDNN and TGSA. With these assessments, we provide a guidance for researchers to choose appropriate methods, as well as insights into future directions for the development of more effective methods in clinical scenarios.

Authors

  • Bihan Shen
    Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Fangyoumin Feng
    Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Kunshi Li
    Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Ping Lin
    Department of Geriatrics, The Third Hospital of Hangzhou, Hangzhou, Zhejiang, China.
  • Liangxiao Ma
    Bio-Med Big Data Center at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Hong Li
    Department of Public Health Sciences, Medical College of South Carolina, Charleston, SC.