VPatho: a deep learning-based two-stage approach for accurate prediction of gain-of-function and loss-of-function variants.

Journal: Briefings in bioinformatics
PMID:

Abstract

Determining the pathogenicity and functional impact (i.e. gain-of-function; GOF or loss-of-function; LOF) of a variant is vital for unraveling the genetic level mechanisms of human diseases. To provide a 'one-stop' framework for the accurate identification of pathogenicity and functional impact of variants, we developed a two-stage deep-learning-based computational solution, termed VPatho, which was trained using a total of 9619 pathogenic GOF/LOF and 138 026 neutral variants curated from various databases. A total number of 138 variant-level, 262 protein-level and 103 genome-level features were extracted for constructing the models of VPatho. The development of VPatho consists of two stages: (i) a random under-sampling multi-scale residual neural network (ResNet) with a newly defined weighted-loss function (RUS-Wg-MSResNet) was proposed to predict variants' pathogenicity on the gnomAD_NV + GOF/LOF dataset; and (ii) an XGBOD model was constructed to predict the functional impact of the given variants. Benchmarking experiments demonstrated that RUS-Wg-MSResNet achieved the highest prediction performance with the weights calculated based on the ratios of neutral versus pathogenic variants. Independent tests showed that both RUS-Wg-MSResNet and XGBOD achieved outstanding performance. Moreover, assessed using variants from the CAGI6 competition, RUS-Wg-MSResNet achieved superior performance compared to state-of-the-art predictors. The fine-trained XGBOD models were further used to blind test the whole LOF data downloaded from gnomAD and accordingly, we identified 31 nonLOF variants that were previously labeled as LOF/uncertain variants. As an implementation of the developed approach, a webserver of VPatho is made publicly available at http://csbio.njust.edu.cn/bioinf/vpatho/ to facilitate community-wide efforts for profiling and prioritizing the query variants with respect to their pathogenicity and functional impact.

Authors

  • Fang Ge
    School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China.
  • Chen Li
    School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Shahid Iqbal
    Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea.
  • Arif Muhammad
    School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China.
  • Fuyi Li
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
  • Maha A Thafar
    College of Computers and Information Technology, Taif University, Taif, Saudi Arabia.
  • Zihao Yan
    School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China.
  • Apilak Worachartcheewan
    Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
  • Xiaofeng Xu
    Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang Jiangsu, 212001, P.R.China.
  • Jiangning Song
    College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia College of Information Engineering, Northwest A&F University, Yangling 712100, China, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia, National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China, Centre for Research in Intelligent Systems, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia.
  • Dong-Jun Yu