DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
Journal:
Bioinformatics (Oxford, England)
PMID:
36495179
Abstract
MOTIVATION: Promoter-centered chromatin interactions, which include promoter-enhancer (PE) and promoter-promoter (PP) interactions, are important to decipher gene regulation and disease mechanisms. The development of next-generation sequencing technologies such as promoter capture Hi-C (pcHi-C) leads to the discovery of promoter-centered chromatin interactions. However, pcHi-C experiments are expensive and thus may be unavailable for tissues/cell types of interest. In addition, these experiments may be underpowered due to insufficient sequencing depth or various artifacts, which results in a limited finding of interactions. Most existing computational methods for predicting chromatin interactions are based on in situ Hi-C and can detect chromatin interactions across the entire genome. However, they may not be optimal for predicting promoter-centered chromatin interactions.