Leveraging deep learning models to understand the daily experience of anxiety in teenagers over the course of a year.
Journal:
Journal of affective disorders
PMID:
36858267
Abstract
INTRODUCTION: Anxiety disorders are a prevalent and severe problem that are often developed early in life and can disrupt the daily lives of affected individuals for many years into adulthood. Given the persistent negative aspects of anxiety, accurate and early assessment is critical for long term outcomes. Currently, the most common method for anxiety assessment is through point-in-time measures like the GAD-7. Unfortunately, this survey and others like it can be subject to recall bias and do not fully capture the variability in an individual's day-to-day symptom experience. The current work aims to evaluate how point-in-time assessments like the GAD-7 relate to daily measurements of anxiety in a teenage population.