Machine learning-based evaluation of application value of pulse wave parameter model in the diagnosis of hypertensive disorder in pregnancy.

Journal: Mathematical biosciences and engineering : MBE
PMID:

Abstract

Hypertensive disorder in pregnancy (HDP) remains a major health burden, and it is associated with systemic cardiovascular adaptation. The pulse wave is an important basis for evaluating the status of the human cardiovascular system. This research aims to evaluate the application value of pulse waves in the diagnosis of hypertensive disorder in pregnancy.This research a retrospective study of pregnant women who attended prenatal care and labored at Beijing Haidian District Maternal and Child Health Hospital. We extracted maternal hemodynamic factors and measured the pulse wave of the pregnant women. We developed an HDP predictive model by using support vector machine algorithms at five-gestational-week stages.At five-gestational-week stages, the area under the receiver operating characteristic curve (AUC) of the predictive model with pulse wave parameters was higher than that of the predictive model with hemodynamic factors. The AUC values of the predictive model with pulse wave parameters were 0.77 (95% CI 0.64 to 0.9), 0.83 (95% CI 0.77 to 0.9), 0.85 (95% CI 0.81 to 0.9), 0.93 (95% CI 0.9 to 0.96) and 0.88 (95% CI 0.8 to 0.95) at five-gestational-week stages, respectively. Compared to the predictive models with hemodynamic factors, the predictive model with pulse wave parameters had better prediction effects on HDP.Pulse waves had good predictive effects for HDP and provided appropriate guidance and a basis for non-invasive detection of HDP.

Authors

  • Xinyu Zhang
    Wenzhou Medical University Renji College, Wenzhou, Zhejiang, China.
  • Yu Meng
    Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
  • Mei Jiang
    College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
  • Lin Yang
    National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
  • Kuixing Zhang
    College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
  • Cuiting Lian
    Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China.
  • Ziwei Li
    Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China.