Deep learning for automated segmentation of the temporomandibular joint.
Journal:
Journal of dentistry
PMID:
36870441
Abstract
OBJECTIVE: Quantitative analysis of the volume and shape of the temporomandibular joint (TMJ) using cone-beam computed tomography (CBCT) requires accurate segmentation of the mandibular condyles and the glenoid fossae. This study aimed to develop and validate an automated segmentation tool based on a deep learning algorithm for accurate 3D reconstruction of the TMJ.