Artificial Intelligence for Clinical Flow Cytometry.
Journal:
Clinics in laboratory medicine
Published Date:
May 29, 2023
Abstract
In this review, the authors discuss the fundamental principles of machine learning. They explore recent studies and approaches in implementing machine learning into flow cytometry workflows. These applications are promising but not without their shortcomings. Explainability may be the biggest barrier to adoption, as they contain "black boxes" in which a complex network of mathematical processes learns features of data that are not translatable into real language. The authors discuss the current limitations of machine learning models and the possibility that, without a multiinstitutional development process, these applications could have poor generalizability. They also discuss widespread deployment of augmented decision-making.