Post Hoc Sample Size Estimation for Deep Learning Architectures for ECG-Classification.
Journal:
Studies in health technology and informatics
Published Date:
May 18, 2023
Abstract
Deep Learning architectures for time series require a large number of training samples, however traditional sample size estimation for sufficient model performance is not applicable for machine learning, especially in the field of electrocardiograms (ECGs). This paper outlines a sample size estimation strategy for binary classification problems on ECGs using different deep learning architectures and the large publicly available PTB-XL dataset, which includes 21801 ECG samples. This work evaluates binary classification tasks for Myocardial Infarction (MI), Conduction Disturbance (CD), ST/T Change (STTC), and Sex. All estimations are benchmarked across different architectures, including XResNet, Inception-, XceptionTime and a fully convolutional network (FCN). The results indicate trends for required sample sizes for given tasks and architectures, which can be used as orientation for future ECG studies or feasibility aspects.