Post Hoc Sample Size Estimation for Deep Learning Architectures for ECG-Classification.

Journal: Studies in health technology and informatics
Published Date:

Abstract

Deep Learning architectures for time series require a large number of training samples, however traditional sample size estimation for sufficient model performance is not applicable for machine learning, especially in the field of electrocardiograms (ECGs). This paper outlines a sample size estimation strategy for binary classification problems on ECGs using different deep learning architectures and the large publicly available PTB-XL dataset, which includes 21801 ECG samples. This work evaluates binary classification tasks for Myocardial Infarction (MI), Conduction Disturbance (CD), ST/T Change (STTC), and Sex. All estimations are benchmarked across different architectures, including XResNet, Inception-, XceptionTime and a fully convolutional network (FCN). The results indicate trends for required sample sizes for given tasks and architectures, which can be used as orientation for future ECG studies or feasibility aspects.

Authors

  • Lucas Bickmann
    Institute of Medical Informatics, University of Münster, Münster, Germany.
  • Lucas Plagwitz
    Institute for Translational Psychiatry, University of Münster, Münster, Germany.
  • Julian Varghese
    Institute of Medical Data Science, Otto-von-Guericke University, Magdeburg, Germany.