Artificial Intelligence framework with traditional computer vision and deep learning approaches for optimal automatic segmentation of left ventricle with scar.

Journal: Artificial intelligence in medicine
PMID:

Abstract

Automatic segmentation of the cardiac left ventricle with scars remains a challenging and clinically significant task, as it is essential for patient diagnosis and treatment pathways. This study aimed to develop a novel framework and cost function to achieve optimal automatic segmentation of the left ventricle with scars using LGE-MRI images. To ensure the generalization of the framework, an unbiased validation protocol was established using out-of-distribution (OOD) internal and external validation cohorts, and intra-observation and inter-observer variability ground truths. The framework employs a combination of traditional computer vision techniques and deep learning, to achieve optimal segmentation results. The traditional approach uses multi-atlas techniques, active contours, and k-means methods, while the deep learning approach utilizes various deep learning techniques and networks. The study found that the traditional computer vision technique delivered more accurate results than deep learning, except in cases where there was breath misalignment error. The optimal solution of the framework achieved robust and generalized results with Dice scores of 82.8 ± 6.4% and 72.1 ± 4.6% in the internal and external OOD cohorts, respectively. The developed framework offers a high-performance solution for automatic segmentation of the left ventricle with scars using LGE-MRI. Unlike existing state-of-the-art approaches, it achieves unbiased results across different hospitals and vendors without the need for training or tuning in hospital cohorts. This framework offers a valuable tool for experts to accomplish the task of fully automatic segmentation of the left ventricle with scars based on a single-modality cardiac scan.

Authors

  • Michail Mamalakis
    School of Computer Science, University of Sheffield, 211 Portobello, Sheffield City Centre, Sheffield S1 4DP, UK.
  • Pankaj Garg
    From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
  • Tom Nelson
    Department of Cardiology, Sheffield Teaching Hospitals Sheffield S5 7AU, UK.
  • Justin Lee
    Department of Cardiology, Sheffield Teaching Hospitals Sheffield S5 7AU, UK.
  • Andrew J Swift
    Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
  • James M Wild
    Insigneo Institute for in-silico, Medicine, University of Sheffield, Sheffield, S1 4DP, UK; Polaris, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
  • Richard H Clayton
    Department of Computer Science, University of Sheffield, Sheffield, UK; Insigneo Institute for in-silico Medicine, Sheffield, UK.