EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.

Authors

  • Mohsen Parsa
    School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran.
  • Habib Yousefi Rad
    School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran.
  • Hadi Vaezi
    School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran.
  • Gholam-Ali Hossein-Zadeh
    School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
  • Seyed Kamaledin Setarehdan
    Control and Intelligent Processing Centre of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
  • Reza Rostami
    School of Psychology and Education, University of Tehran, Tehran, Iran.
  • Hana Rostami
    ACNC, Atieh Clinical Neuroscience Center, Valiasr St., P.O. Box 19697-13663, Tehran, Iran.
  • Abdol-Hossein Vahabie
    Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran; Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran. Electronic address: h.vahabie@ut.ac.ir.