Extreme Events Prediction from Nonlocal Partial Information in a Spatiotemporally Chaotic Microcavity Laser.

Journal: Physical review letters
PMID:

Abstract

The forecasting of high-dimensional, spatiotemporal nonlinear systems has made tremendous progress with the advent of model-free machine learning techniques. However, in real systems it is not always possible to have all the information needed; only partial information is available for learning and forecasting. This can be due to insufficient temporal or spatial samplings, to inaccessible variables, or to noisy training data. Here, we show that it is nevertheless possible to forecast extreme event occurrences in incomplete experimental recordings from a spatiotemporally chaotic microcavity laser using reservoir computing. Selecting regions of maximum transfer entropy, we show that it is possible to get higher forecasting accuracy using nonlocal data vs local data, thus allowing greater warning times of at least twice the time horizon predicted from the nonlinear local Lyapunov exponent.

Authors

  • V A Pammi
    Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France.
  • M G Clerc
    Departamento de Física and Millenium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile.
  • S Coulibaly
    Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
  • S Barbay
    Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France.