Prediction of Sleep Stages Via Deep Learning Using Smartphone Audio Recordings in Home Environments: Model Development and Validation.
Journal:
Journal of medical Internet research
PMID:
37261889
Abstract
BACKGROUND: The growing public interest and awareness regarding the significance of sleep is driving the demand for sleep monitoring at home. In addition to various commercially available wearable and nearable devices, sound-based sleep staging via deep learning is emerging as a decent alternative for their convenience and potential accuracy. However, sound-based sleep staging has only been studied using in-laboratory sound data. In real-world sleep environments (homes), there is abundant background noise, in contrast to quiet, controlled environments such as laboratories. The use of sound-based sleep staging at homes has not been investigated while it is essential for practical use on a daily basis. Challenges are the lack of and the expected huge expense of acquiring a sufficient size of home data annotated with sleep stages to train a large-scale neural network.