A Deep Learning-based in silico Framework for Optimization on Retinal Prosthetic Stimulation.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

We propose a neural network-based framework to optimize the perceptions simulated by the in silico retinal implant model pulse2percept. The overall pipeline consists of a trainable encoder, a pre-trained retinal implant model and a pre-trained evaluator. The encoder is a U-Net, which takes the original image and outputs the stimulus. The pre-trained retinal implant model is also a U-Net, which is trained to mimic the biomimetic perceptual model implemented in pulse2percept. The evaluator is a shallow VGG classifier, which is trained with original images. Based on 10,000 test images from the MNIST dataset, we show that the convolutional neural network-based encoder performs significantly better than the trivial downsampling approach, yielding a boost in the weighted F1-Score by 36.17% in the pre-trained classifier with 6×10 electrodes. With this fully neural network-based encoder, the quality of the downstream perceptions can be fine-tuned using gradient descent in an end-to-end fashion.

Authors

  • Yuli Wu
  • Ivan Karetic
  • Johannes Stegmaier
    Institute for Applied Computer Science, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
  • Peter Walter
  • Dorit Merhof
    Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany (J.S., D.B.A., S.N.); Institute of Computer Vision and Imaging, RWTH University Aachen, Pauwelsstrasse 30, 52072 Aachen, Germany (J.S., D.M.); Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (D.T., M.P., F.M., C.K., S.N.); and Faculty of Mathematics and Natural Sciences, Institute of Informatics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany (S.C.).