Virtual screening strategy for anti-DPP-IV natural flavonoid derivatives based on machine learning.

Journal: Journal of biomolecular structure & dynamics
PMID:

Abstract

Flavonoids, especially their inhibitory effect on DPP-IV activity, have been widely recognized for their antidiabetic effects. However, the variety of natural flavonoid derivatives is very rich, and even subtle structural differences can lead to several orders of magnitude differences in their inhibitory activities against DPP-IV, which makes it challenging to find novel and potent anti-DPP-IV flavonoid derivatives experimentally. Therefore, there is an urgent need to develop an efficient screening pipeline that targets active natural products. Here, we propose a fusion strategy based on a QSAR model, and to simplify this process, it was applied to the discovery of flavonoid derivatives with potent anti-DPP-IV activity. First, the high-quality QSAR model ( = 0.816, MAE = 0.14, MSE = 0.026) was composed of seven key molecular property parameters, which were constructed with the genetic algorithm (GA) and passed the leave-one-out cross-validation evaluation. A total of 1,668 flavonoid derivatives were obtained from the natural product enriched by NPCD based on molecular fingerprint similarity (> 0.8). Further, the enriched flavonoid derivatives were further predicted and screened using the QED score combined with the QSAR model, and a total of 33 flavonoid derivatives (IC50 < 6.5 μM) were found. Subsequently, three flavonoid derivatives (5,7,3',5'-tetrahydroxyflavone, 3,7-dihydroxy-5,3',4'-trimethoxyflavone, and 5,7,2',5'-tetrahydroxyflavone) with highly effective anti-DPP-IV activity were obtained by ADMET analysis. Finally, the DPP-IV inhibitory potential of these three flavonoid derivatives was verified by 100 ns MD simulation and MM/PB(GB)SA.Communicated by Ramaswamy H. Sarma.

Authors

  • Gen Lu
    Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China.
  • Fei Pan
    Department of Emergency, The First Medical Center to Chinese People's Liberation Army General Hospital, Beijing, China.
  • Xiaotong Li
    School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
  • Zehui Zhu
    Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.
  • Lei Zhao
    Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China.
  • Ya Wu
    MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China. zhangxuan@nwpu.edu.cn.
  • Wenli Tian
    State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
  • Wenjun Peng
    State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
  • Jinling Liu
    d Department of Digestive System Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang Province, China.