Deep learning in preclinical antibody drug discovery and development.
Journal:
Methods (San Diego, Calif.)
Published Date:
Jul 15, 2023
Abstract
Antibody drugs have become a key part of biotherapeutics. Patients suffering from various diseases have benefited from antibody therapies. However, its development process is rather long, expensive and risky. To speed up the process, reduce cost and improve success rate, artificial intelligence, especially deep learning methods, have been widely used in all aspects of preclinical antibody drug development, from library generation to hit identification, developability screening, lead selection and optimization. In this review, we systematically summarize antibody encodings, deep learning architectures and models used in preclinical antibody drug discovery and development. We also critically discuss challenges and opportunities, problems and possible solutions, current applications and future directions of deep learning in antibody drug development.