Automated segmentation of the mandibular canal and its anterior loop by deep learning.

Journal: Scientific reports
PMID:

Abstract

Accurate mandibular canal (MC) detection is crucial to avoid nerve injury during surgical procedures. Moreover, the anatomic complexity of the interforaminal region requires a precise delineation of anatomical variations such as the anterior loop (AL). Therefore, CBCT-based presurgical planning is recommended, even though anatomical variations and lack of MC cortication make canal delineation challenging. To overcome these limitations, artificial intelligence (AI) may aid presurgical MC delineation. In the present study, we aim to train and validate an AI-driven tool capable of performing accurate segmentation of the MC even in the presence of anatomical variation such as AL. Results achieved high accuracy metrics, with 0.997 of global accuracy for both MC with and without AL. The anterior and middle sections of the MC, where most surgical interventions are performed, presented the most accurate segmentation compared to the posterior section. The AI-driven tool provided accurate segmentation of the mandibular canal, even in the presence of anatomical variation such as an anterior loop. Thus, the presently validated dedicated AI tool may aid clinicians in automating the segmentation of neurovascular canals and their anatomical variations. It may significantly contribute to presurgical planning for dental implant placement, especially in the interforaminal region.

Authors

  • Nicolly Oliveira-Santos
    OMFS IMPATH Research Group, Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, UZ Campus St Rafael, Leuven, Belgium.
  • Reinhilde Jacobs
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium; Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden. Electronic address: reinhilde.jacobs@ki.se.
  • Fernando Fortes Picoli
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 7, 3000, Leuven, Belgium; School of Dentistry, Federal University of Goiás, Goiânia, GO, Brazil.
  • Pierre Lahoud
    OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
  • Liselot Niclaes
    OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Belgium.
  • Francisco Carlos Groppo
    - Universidade Estadual de Ponta Grossa, Departamento de Biologia Geral, Laboratório de Fisiologia e Patofisiologia, Ponta Grossa, PR, Brasil.