SEINN: A deep learning algorithm for the stochastic epidemic model.

Journal: Mathematical biosciences and engineering : MBE
PMID:

Abstract

Stochastic modeling predicts various outcomes from stochasticity in the data, parameters and dynamical system. Stochastic models are deemed more appropriate than deterministic models accounting in terms of essential and practical information about a system. The objective of the current investigation is to address the issue above through the development of a novel deep neural network referred to as a stochastic epidemiology-informed neural network. This network learns knowledge about the parameters and dynamics of a stochastic epidemic vaccine model. Our analysis centers on examining the nonlinear incidence rate of the model from the perspective of the combined effects of vaccination and stochasticity. Based on empirical evidence, stochastic models offer a more comprehensive understanding than deterministic models, mainly when we use error metrics. The findings of our study indicate that a decrease in randomness and an increase in vaccination rates are associated with a better prediction of nonlinear incidence rates. Adopting a nonlinear incidence rate enables a more comprehensive representation of the complexities of transmitting diseases. The computational analysis of the proposed method, focusing on sensitivity analysis and overfitting analysis, shows that the proposed method is efficient. Our research aims to guide policymakers on the effects of stochasticity in epidemic models, thereby aiding the development of effective vaccination and mitigation policies. Several case studies have been conducted on nonlinear incidence rates using data from Tennessee, USA.

Authors

  • Thomas Torku
    University Studies Department, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
  • Abdul Khaliq
    Department of Electrical and Computer Engineering, Sir Syed CASE Institute of Technology, Islamabad, Pakistan.
  • Fathalla Rihan
    Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, UAE.