Protein-ligand binding affinity prediction exploiting sequence constituent homology.
Journal:
Bioinformatics (Oxford, England)
Published Date:
Aug 1, 2023
Abstract
MOTIVATION: Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 datasets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding affinity for these complexes without the need to know the exact binding conformation of a ligand.