HealthNet: A Health Progression Network via Heterogeneous Medical Information Fusion.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Numerous electronic health records (EHRs) offer valuable opportunities for understanding patients' health status at different stages, namely health progression. Extracting the health progression patterns allows researchers to perform accurate predictive analysis of patient outcomes. However, most existing works on this task suffer from the following two limitations: 1) the diverse dependencies among heterogeneous medical entities are overlooked, which leads to the one-sided modeling of patients' status and 2) the extraction granularity of patient's health progression patterns is coarse, limiting the model's ability to accurately infer the patient's future status. To address these challenges, a pretrained Health progression network via heterogeneous medical information fusion, HealthNet, is proposed in this article. Specifically, a global heterogeneous graph in HealthNet is built to integrate heterogeneous medical entities and the dependencies among them. In addition, the proposed health progression network is designed to model hierarchical medical event sequences. By this method, the fine-grained health progression patterns of patients' health can be captured. The experimental results on real disease datasets demonstrate that HealthNet outperforms the state-of-the-art models for both diagnosis prediction task and mortality prediction task.

Authors

  • Fuqiang Yu
  • Lizhen Cui
    School of Software, Shandong University, Jinan, 250101, China.
  • Huanhuan Chen
  • Yiming Cao
  • Ning Liu
    School of Public Health, Hangzhou Normal University, Hangzhou, China.
  • Weiming Huang
    Department of Thoracic Surgery, Peking University First Hospital, Beijing, China.
  • Yonghui Xu
    School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China.
  • Hua Lu
    Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250358, China.