CIRCE: Web-Based Platform for the Prediction of Cannabinoid Receptor Ligands Using Explainable Machine Learning.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

The endocannabinoid system, which includes cannabinoid receptor 1 and 2 subtypes (CBR and CBR, respectively), is responsible for the onset of various pathologies including neurodegeneration, cancer, neuropathic and inflammatory pain, obesity, and inflammatory bowel disease. Given the high similarity of CBR and CBR, generating subtype-selective ligands is still an open challenge. In this work, the Cannabinoid Iterative Revaluation for Classification and Explanation (CIRCE) compound prediction platform has been generated based on explainable machine learning to support the design of selective CBR and CBR ligands. Multilayer classifiers were combined with Shapley value analysis to facilitate explainable predictions. In test calculations, CIRCE predictions reached ∼80% accuracy and structural features determining ligand predictions were rationalized. CIRCE was designed as a web-based prediction platform that is made freely available as a part of our study.

Authors

  • Nicola Gambacorta
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Fulvio Ciriaco
    Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
  • Nicola Amoroso
    Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: nicola.amoroso@ba.infn.it.
  • Cosimo Damiano Altomare
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Jürgen Bajorath
    Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstr. 2, D-53113 Bonn, Germany.
  • Orazio Nicolotti
    Department of Pharmacy- Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.