A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile.

Journal: Sensors (Basel, Switzerland)
PMID:

Abstract

Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and, therefore, an accurate calculation of fishing quotas. This work proposes a deep learning-based spatial-spectral method to classify five pelagic species of interest for the Chilean fishing industry, including the targeted , and and non-targeted and fish species. This proof-of-concept method is composed of two channels of a convolutional neural network (CNN) architecture that processes the Red-Green-Blue () images and the visible and near-infrared (VIS-NIR) reflectance spectra of each species. The classification results of the CNN model achieved over 94% in all performance metrics, outperforming other state-of-the-art techniques. These results support the potential use of the proposed method to automatically monitor fish landings and, therefore, ensure compliance with the established fishing quotas.

Authors

  • Jorge E Pezoa
  • Diego A Ramírez
    Department of Electrical Engineering, Universidad de Concepción, Concepción 4070409, Chile.
  • Cristofher A Godoy
    Department of Electrical Engineering, Universidad de Concepción, Concepción 4070409, Chile.
  • María F Saavedra
    Department of Zoology, Universidad de Concepción, Concepción 4070409, Chile.
  • Silvia E Restrepo
    Department of Electrical Engineering, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.
  • Pablo A Coelho-Caro
    School of Engineering, Architecture and Design, Universidad San Sebastián, Concepción 4080871, Chile.
  • Christopher A Flores
    Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile. chrisflores@udec.cl.
  • Francisco G Pérez
    Department of Electrical Engineering, Universidad de Concepción, Concepción 4070409, Chile.
  • Sergio N Torres
    Department of Electrical Engineering, Universidad de Concepción, Concepción 4070409, Chile.
  • Mauricio A Urbina
    Department of Zoology, Universidad de Concepción, Concepción 4070409, Chile.