A scale conjugate neural network approach for the fractional schistosomiasis disease system.

Journal: Computer methods in biomechanics and biomedical engineering
Published Date:

Abstract

This study presents the numerical solutions of the fractional schistosomiasis disease model (SDM) using the supervised neural networks (SNNs) and the computational scaled conjugate gradient (SCG), i.e. SNNs-SCG. The fractional derivatives are used for the precise outcomes of the fractional SDM. The preliminary fractional SDM is categorized as: uninfected, infected with schistosomiasis, recovered through infection, expose and susceptible to this virus. The accurateness of the SNNs-SCG is performed to solve three different scenarios based on the fractional SDM with synthetic data obtained with fractional Adams scheme (FAS). The generated data of FAS is used to execute SNNs-SCG scheme with 81% for training samples, 12% for testing and 7% for validation or authorization. The correctness of SNNs-SCG approach is perceived by the comparison with reference FAS results. The performances based on the error histograms (EHs), absolute error, MSE, regression, state transitions (STs) and correlation accomplish the accuracy, competence, and finesse of the SNNs-SCG scheme.

Authors

  • Zulqurnain Sabir
    Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
  • Shahid Ahmad Bhat
    LUT Business School, LUT University, Lappeenranta, Finland.
  • Muhammad Asif Zahoor Raja
    Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin, Taiwan, R.O.C.
  • Dumitru Baleanu
    Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey.
  • Fazli Amin
    Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
  • Hafiz Abdul Wahab
    Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.