Deep learning-based dynamic ventilatory threshold estimation from electrocardiograms.
Journal:
Computer methods and programs in biomedicine
PMID:
38118329
Abstract
BACKGROUND AND OBJECTIVE: The ventilatory threshold (VT) marks the transition from aerobic to anaerobic metabolism and is used to assess cardiorespiratory endurance. A conventional way to assess VT is cardiopulmonary exercise testing, which requires a gas analyzer. Another method for measuring VT involves calculating the heart rate variability (HRV) from an electrocardiogram (ECG) by computing the variability of heartbeats. However, the HRV method has some limitations. ECGs should be recorded for at least 5 minutes to calculate the HRV, and the result may depend on the utilized ECG preprocessing algorithms.