From Black Boxes to Actionable Insights: A Perspective on Explainable Artificial Intelligence for Scientific Discovery.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

The application of Explainable Artificial Intelligence (XAI) in the field of chemistry has garnered growing interest for its potential to justify the prediction of black-box machine learning models and provide actionable insights. We first survey a range of XAI techniques adapted for chemical applications and categorize them based on the technical details of each methodology. We then present a few case studies to illustrate the practical utility of XAI, such as identifying carcinogenic molecules and guiding molecular optimizations, in order to provide chemists with concrete examples of ways to take full advantage of XAI-augmented machine learning for chemistry. Despite the initial success of XAI in chemistry, we still face the challenges of developing more reliable explanations, assuring robustness against adversarial actions, and customizing the explanation for different applications and needs of the diverse scientific community. Finally, we discuss the emerging role of large language models like GPT in generating natural language explanations and discusses the specific challenges associated with them. We advocate that addressing the aforementioned challenges and actively embracing new techniques may contribute to establishing machine learning as an indispensable technique for chemistry in this digital era.

Authors

  • Zhenxing Wu
  • Jihong Chen
    Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China.
  • Yitong Li
    Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
  • Yafeng Deng
    Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou 310018, Zhejiang, China.
  • Haitao Zhao
    Automation Department, School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China; College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, PR China.
  • Chang-Yu Hsieh
    Tencent Quantum Laboratory, Tencent, Shenzhen 518057 Guangdong, P. R. China.
  • Tingjun Hou
    College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China.