Addressing Gearbox Health Monitoring Challenges for Helicopters: A Machine Learning Approach.

Journal: Anais da Academia Brasileira de Ciencias
PMID:

Abstract

The transmission gearbox of military helicopters, such as the H225M, experiences intense dynamic loads, leading to the detachment of ferromagnetic particles, often due to wear or fatigue. This poses safety risks, as excessive particle detachment demands stringent maintenance. To address this, the study applies machine learning algorithms to predict particle detachment using data from the Flight Data Recorder and Health and Usage Monitoring System. The approach aims to mitigate operational challenges faced by the Brazilian H225M fleet while considering aviation safety criteria and the pre-processing needs for an effective machine learning application.

Authors

  • Guilherme Moreira
    Instituto Tecnológico de Aeronáutica (ITA), Programa de Pós-graduação em Aplicações, Pça. Mal. Eduardo Gomes, 50, 12228-970 São José dos Campos, SP, Brazil.
  • Alexandre Pereira
    Instituto Tecnológico de Aeronáutica (ITA), Programa de Pós-graduação em Engenharia Aeronáutica e Mecânica, Pça. Mal. Eduardo Gomes, 50, 12228-970 São José dos Campos, SP, Brazil.
  • Airton Nabarrete
    Instituto Tecnológico de Aeronáutica (ITA), Divisão de Engenharia Aeronáutica e Aerospacial, Pça. Mal. Eduardo Gomes, 50, 12228-970, São José dos Campos, SP, Brazil.
  • Willer Gomes
    Instituto Tecnológico de Aeronáutica (ITA), Departamento de Sistema Aeroespaciais, Pca. Mal. Eduardo Gomes, 50, 12228-900 São José dos Campos, SP, Brazil.