Innovative infrastructure to access Brazilian fungal diversity using deep learning.

Journal: PeerJ
Published Date:

Abstract

In the present investigation, we employ a novel and meticulously structured database assembled by experts, encompassing macrofungi field-collected in Brazil, featuring upwards of 13,894 photographs representing 505 distinct species. The purpose of utilizing this database is twofold: firstly, to furnish training and validation for convolutional neural networks (CNNs) with the capacity for autonomous identification of macrofungal species; secondly, to develop a sophisticated mobile application replete with an advanced user interface. This interface is specifically crafted to acquire images, and, utilizing the image recognition capabilities afforded by the trained CNN, proffer potential identifications for the macrofungal species depicted therein. Such technological advancements democratize access to the Brazilian Funga, thereby enhancing public engagement and knowledge dissemination, and also facilitating contributions from the populace to the expanding body of knowledge concerning the conservation of macrofungal species of Brazil.

Authors

  • Thiago Chaves
    Brazilian National Institute for Digital Convergence-INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Joicymara Santos Xavier
    Institute of Agricultural Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Minas Gerais, Brazil.
  • Alfeu Gonçalves Dos Santos
    Brazilian National Institute for Digital Convergence-INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Kelmer Martins-Cunha
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Fernanda Karstedt
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Thiago Kossmann
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Susanne Sourell
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Eloisa Leopoldo
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Miriam Nathalie Fortuna Ferreira
    Brazilian National Institute for Digital Convergence-INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Roger Farias
    Brazilian National Institute for Digital Convergence-INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Mahatmã Titton
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Genivaldo Alves-Silva
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Felipe Bittencourt
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Dener Bortolini
    Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
  • Emerson L Gumboski
    Department of Biological Sciences, Regional University of Joinville (UNIVILLE), Joinville, Santa Catarina, Brazil.
  • Aldo von Wangenheim
    Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
  • Aristóteles Góes-Neto
    Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
  • Elisandro Ricardo Drechsler-Santos
    MIND.Funga/MICOLAB, Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.