Visible detection of chilled beef freshness using a paper-based colourimetric sensor array combining with deep learning algorithms.

Journal: Food chemistry
PMID:

Abstract

This study developed an innovative approach that combines a colourimetric sensor array (CSA) composed of twelve pH-response dyes with advanced algorithms, aiming to detect amine gases and assess the freshness of chilled beef. With the assistance of multivariate statistical analysis, the sensor array can effectively distinguish five amine gases and enable rapid quantification of trimethylamine vapour with a limit of detection (LOD) of 8.02 ppb and visually monitor the fresh levels of chilled beef. Moreover, the utilization of deep learning models (ResNet34, VGG16, and GoogleNet) for chilled beef freshness evaluation achieved an overall accuracy of 98.0 %. Furthermore, t-distributed stochastic neighbour embedding (t-SNE) visualized the feature extraction process and provided explanations to understand the classification process of deep learning. The results demonstrated that applying deep learning techniques in the process of pattern recognition of CSA can help in realizing the rapid, robust, and accurate assessment of chilled beef freshness.

Authors

  • Yuandong Lin
    School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
  • Ji Ma
    UCLA Henry Samueli School of Engineering and Applied Science, Los Angeles, USA.
  • Jun-Hu Cheng
    School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
  • Da-Wen Sun
    College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China; Food Refrigeration and Computerized Food Technology, Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. Electronic address: dawen.sun@ucd.ie.