In Silico prediction of inhibitors for multiple transporters via machine learning methods.

Journal: Molecular informatics
Published Date:

Abstract

Transporters play an indispensable role in facilitating the transport of nutrients, signaling molecules and the elimination of metabolites and toxins in human cells. Contemporary computational methods have been employed in the prediction of transporter inhibitors. However, these methods often focus on isolated endpoints, overlooking the interactions between transporters and lacking good interpretation. In this study, we integrated a comprehensive dataset and constructed models to assess the inhibitory effects on seven transporters. Both conventional machine learning and multi-task deep learning methods were employed. The results demonstrated that the MLT-GAT model achieved superior performance with an average AUC value of 0.882. It is noteworthy that our model excels not only in prediction performance but also in achieving robust interpretability, aided by GNN-Explainer. It provided valuable insights into transporter inhibition. The reliability of our model's predictions positioned it as a promising and valuable tool in the field of transporter inhibition research. Related data and code are available at https://gitee.com/wutiantian99/transporter_code.git.

Authors

  • Hao Duan
    1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
  • Chaofeng Lou
    Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
  • Yaxin Gu
    Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
  • Yimeng Wang
    Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
  • Weihua Li
    State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
  • Guixia Liu
    Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China . Email: gxliu@ecust.edu.cn ; Email: ytang234@ecust.edu.cn ; ; Tel: +86-21-64250811.
  • Yun Tang
    Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.