Quantitative measurement of the ureter on three-dimensional magnetic resonance urography images using deep learning.
Journal:
Medical physics
PMID:
38477634
Abstract
BACKGROUND: Accurate measurement of ureteral diameters plays a pivotal role in diagnosing and monitoring urinary tract obstruction (UTO). While three-dimensional magnetic resonance urography (3D MRU) represents a significant advancement in imaging, the traditional manual methods for assessing ureteral diameters are characterized by labor-intensive procedures and inherent variability. In the realm of medical image analysis, deep learning has led to a paradigm shift, yet the development of a comprehensive automated tool for the precise segmentation and measurement of ureters in MR images is an unaddressed challenge.