Machine learning-enhanced noninvasive prenatal testing of monogenic disorders.

Journal: Prenatal diagnosis
PMID:

Abstract

OBJECTIVE: Single-nucleotide variants (SNVs) are of great significance in prenatal diagnosis as they are the leading cause of inherited single-gene disorders (SGDs). Identifying SNVs in a non-invasive prenatal screening (NIPS) scenario is particularly challenging for maternally inherited SNVs. We present an improved method to predict inherited SNVs from maternal or paternal origin in a genome-wide manner.

Authors

  • Noa Liscovitch-Brauer
    Identifai-Genetics Ltd., Tel Aviv, Israel.
  • Ravit Mesika
    Identifai-Genetics Ltd., Tel Aviv, Israel.
  • Tom Rabinowitz
    Identifai-Genetics Ltd., Tel Aviv, Israel.
  • Hadas Volkov
    Identifai-Genetics Ltd., Tel Aviv, Israel.
  • Meitar Grad
    Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  • Reut Tomashov Matar
    Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.
  • Lina Basel-Salmon
    Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  • Oren Tadmor
    Identifai-Genetics Ltd., Tel Aviv, Israel.
  • Amir Beker
    Identifai-Genetics Ltd., Tel Aviv, Israel.
  • Noam Shomron
    Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. nshomron@tauex.tau.ac.il.