Manifold Learning-Based Common Spatial Pattern for EEG Signal Classification.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

EEG signal classification using Riemannian manifolds has shown great potential. However, the huge computational cost associated with Riemannian metrics poses challenges for applying Riemannian methods, particularly in high-dimensional feature data. To address these, we propose an efficient ensemble method called MLCSP-TSE-MLP, which aims to reduce the computational cost while achieving superior performance. MLCSP of the ensemble utilizes a Riemannian graph embedding strategy to learn intrinsic low-dimensional sub-manifolds, enhancing discrimination. TSE uses the Euclidean mean as the reference point for tangent space mapping and reducing computational cost. Finally, the ensemble incorporates the MLP classifier to offer improved classification performance. Classification results conducted on three datasets demonstrate that MLCSP-TSE-MLP achieves significant superior performance compared to various competing methods. Notably, the MLCSP-TSE module achieves a remarkable increase in training speed and exhibits much lower test time compared to traditional Riemannian methods. Based on these results, we believe that the proposed MLCSP-TSE-MLP is a powerful tool for handling high-dimensional data and holds great potential for practical applications.

Authors

  • Guoqing Cai
  • Fenghui Zhang
  • Bolun Yang
  • Shoulin Huang
  • Ting Ma
    Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China.