Robustness of Deep Learning models in electrocardiogram noise detection and classification.
Journal:
Computer methods and programs in biomedicine
Published Date:
May 24, 2024
Abstract
BACKGROUND AND OBJECTIVE: Automatic electrocardiogram (ECG) signal analysis for heart disease detection has gained significant attention due to busy lifestyles. However, ECG signals are susceptible to noise, which adversely affects the performance of ECG signal analysers. Traditional blind filtering methods use predefined noise frequency and filter order, but they alter ECG biomarkers. Several Deep Learning-based ECG noise detection and classification methods exist, but no study compares recurrent neural network (RNN) and convolutional neural network (CNN) architectures and their complexity.