A novel plant type, leaf disease and severity identification framework using CNN and transformer with multi-label method.

Journal: Scientific reports
Published Date:

Abstract

The growth of plants is threatened by numerous diseases. Accurate and timely identification of these diseases is crucial to prevent disease spreading. Many deep learning-based methods have been proposed for identifying leaf diseases. However, these methods often combine plant, leaf disease, and severity into one category or treat them separately, resulting in a large number of categories or complex network structures. Given this, this paper proposes a novel leaf disease identification network (LDI-NET) using a multi-label method. It is quite special because it can identify plant type, leaf disease and severity simultaneously using a single straightforward branch model without increasing the number of categories and avoiding extra branches. It consists of three modules, i.e., a feature tokenizer module, a token encoder module and a multi-label decoder module. The LDI-NET works as follows: Firstly, the feature tokenizer module is designed to enhance the capability of extracting local and long-range global contextual features by leveraging the strengths of convolutional neural networks and transformers. Secondly, the token encoder module is utilized to obtain context-rich tokens that can establish relationships among the plant, leaf disease and severity. Thirdly, the multi-label decoder module combined with a residual structure is utilized to fuse shallow and deep contextual features for better utilization of different-level features. This allows the identification of plant type, leaf disease, and severity simultaneously. Experiments show that the proposed LDI-NET outperforms the prevalent methods using the publicly available AI challenger 2018 dataset.

Authors

  • Bin Yang
    School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, PR China. Electronic address: yangbin@dlut.edu.cn.
  • Mingwei Li
    State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
  • Fei Li
    Institute for Precision Medicine, Tsinghua University, Beijing, China.
  • Yongbo Wang
    School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China. Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China. These authors contributed equally.
  • Qiaokang Liang
  • Ruiyuan Zhao
    Cotton Sciences Research Institute of Hunan, Changde, 415101, China.
  • Caihong Li
    * Department of Computer Science and Engineering, Shandong University of Technology, Shandong 255049, P. R. China.
  • Jianwu Wang
    Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.