Enhanced thyroid nodule segmentation through U-Net and VGG16 fusion with feature engineering: A comprehensive study.
Journal:
Computer methods and programs in biomedicine
PMID:
38723436
Abstract
BACKGROUND AND OBJECTIVE: The thyroid gland, a key component of the endocrine system, is pivotal in regulating bodily functions. Thermography, a non-invasive imaging technique utilizing infrared cameras, has emerged as a diagnostic tool for thyroid-related conditions, offering advantages such as early detection and risk stratification. Artificial intelligence (AI) has demonstrated success in medical diagnostics, and its integration into thermal imaging analysis holds promise for improving diagnostic capabilities. This study aims to explore the potential of AI, specifically convolutional neural networks (CNNs), in enhancing the analysis of thyroid thermograms for the detection of nodules and abnormalities.