ELRL-MD: a deep learning approach for myocarditis diagnosis using cardiac magnetic resonance images with ensemble and reinforcement learning integration.

Journal: Physiological measurement
Published Date:

Abstract

Myocarditis poses a significant health risk, often precipitated by viral infections like coronavirus disease, and can lead to fatal cardiac complications. As a less invasive alternative to the standard diagnostic practice of endomyocardial biopsy, which is highly invasive and thus limited to severe cases, cardiac magnetic resonance (CMR) imaging offers a promising solution for detecting myocardial abnormalities.This study introduces a deep model called ELRL-MD that combines ensemble learning and reinforcement learning (RL) for effective myocarditis diagnosis from CMR images. The model begins with pre-training via the artificial bee colony (ABC) algorithm to enhance the starting point for learning. An array of convolutional neural networks (CNNs) then works in concert to extract and integrate features from CMR images for accurate diagnosis. Leveraging the Z-Alizadeh Sani myocarditis CMR dataset, the model employs RL to navigate the dataset's imbalance by conceptualizing diagnosis as a decision-making process.ELRL-DM demonstrates remarkable efficacy, surpassing other deep learning, conventional machine learning, and transfer learning models, achieving an F-measure of 88.2% and a geometric mean of 90.6%. Extensive experimentation helped pinpoint the optimal reward function settings and the perfect count of CNNs.The study addresses the primary technical challenge of inherent data imbalance in CMR imaging datasets and the risk of models converging on local optima due to suboptimal initial weight settings. Further analysis, leaving out ABC and RL components, confirmed their contributions to the model's overall performance, underscoring the effectiveness of addressing these critical technical challenges.

Authors

  • Adele Mirzaee Moghaddam Kasmaee
    Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran.
  • Alireza Ataei
    Department of Mathematics, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr 7516913817, Iran.
  • Seyed Vahid Moravvej
    Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.
  • Roohallah Alizadehsani
    Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia.
  • Juan M Górriz
    1Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain.
  • Yu-Dong Zhang
    University of Leicester, Leicester, United Kingdom.
  • Ru-San Tan
    National Heart Centre Singapore, Singapore, Singapore.
  • U Rajendra Acharya
    School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Darling Heights, Australia.