Multiclass Classification of Visual Electroencephalogram Based on Channel Selection, Minimum Norm Estimation Algorithm, and Deep Network Architectures.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain-computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a significant advantage since it allows the supervision of more than one BCI interaction, considering that each class label supervises a BCI task. However, because of the nonlinearity and nonstationarity of EEG signals, using multiclass classification based on EEG features remains a significant challenge for BCI systems. In the present work, mutual information-based discriminant channel selection and minimum-norm estimate algorithms were implemented to select discriminant channels and enhance the EEG data. Hence, deep EEGNet and convolutional recurrent neural networks were separately implemented to classify the EEG data for image visualization into 40 labels. Using the k-fold cross-validation approach, average classification accuracies of 94.8% and 89.8% were obtained by implementing the aforementioned network architectures. The satisfactory results obtained with this method offer a new implementation opportunity for multitask embedded BCI applications utilizing a reduced number of both channels (<50%) and network parameters (<110 K).

Authors

  • Tat'y Mwata-Velu
    Robotics and Mechatronics Lab, Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Avenida Juan de Dios Bátiz esquina Miguel Othón de Mendizábal Colonia Nueva Industrial, Vallejo CP, Gustavo A. Madero, Mexico City 07738, Mexico.
  • Erik Zamora
    Robotics and Mechatronics Lab, Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Avenida Juan de Dios Bátiz esquina Miguel Othón de Mendizábal Colonia Nueva Industrial, Vallejo CP, Gustavo A. Madero, Mexico City 07738, Mexico.
  • Juan Irving Vasquez-Gomez
    Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Avenida Juan de Dios Bátiz esquina Miguel Othón de Mendizábal Colonia Nueva Industrial, Gustavo A. Madero, Mexico City 07738, Mexico.
  • Jose Ruiz-Pinales
    Digital Signal Processing and Telematics Groups, Engineering Division of the Campus Irapuato-Salamanca (DICIS), Universidad de Guanajuato, Palo Blanco, Salamanca, Guanajuato, Mexico.
  • Humberto Sossa
    Instituto Politécnico Nacional-Centro de Investigación en Computación, Av. Juan de Dios Batiz S/N, Gustavo A. Madero 07738, México, Distrito Federal, Mexico. Electronic address: hsossa@cic.ipn.mx.