Topological Learning Approach to Characterizing Biological Membranes.

Journal: Journal of chemical information and modeling
PMID:

Abstract

Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here, we present a persistent homology (PH)-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information on lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of dipalmitoyl-phosphatidylcholine membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by PH filtration, in which interaction spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a that captures enduring key of the configuration landscape using homology, yielding . Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g., sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.

Authors

  • Andres S Arango
    Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Hyun Park
    Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
  • Emad Tajkhorshid
    NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.