Predicting thermodynamic adhesion energies of membrane fouling in planktonic anammox MBR via backpropagation neural network model.
Journal:
Bioresource technology
PMID:
38901751
Abstract
Predicting thermodynamic adhesion energies was a critical strategy for mitigating membrane fouling. This study utilized a backpropagation (BP) neural network model to predict the thermodynamic adhesion energies associated with membrane fouling in a planktonic anammox MBR. Acid-base (ΔG), electrostatic double layer (ΔG), and Lifshitz-van der Waals (ΔG) energies were selected as output variables, the training dataset was collected by the advanced Derjaguin-Landau-Verwey-Overbeek (XDLVO) method. Optimization results identified "7-10-3″ as the optimal network structure for the BP model. The prediction results demonstrated a high degree of fit between the predicted and experimental values of thermodynamic adhesion energy (R2 ≥ 0.9278), indicating a robust predictive capability of the model in this study. Overall, the study presented a practical BP neural network model for predicting thermodynamic adhesion energies, significantly enhancing the prediction tool for adhesive fouling behavior in anammox MBRs.