Baseline-Guided Representation Learning for Noise-Robust EEG Signal Classification.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
PMID:
40040096
Abstract
Brain-computer interfaces (BCIs) suffer from limited accuracy due to noisy electroencephalography (EEG) signals. Existing denoising methods often remove artifacts such as eye movement or use techniques such as linear detrending, which inadvertently discard crucial task-relevant information. To address this issue, we present BGNet, a novel deep learning framework that leverages underutilized baseline EEG signals for dynamic noise mitigation and robust feature extraction to improve motor imagery (MI) EEG classification. Our approach employs data augmentation to strengthen model robustness, an autoencoder to extract features from baseline and MI signals, a feature alignment module to separate specific task and noise, and a classifier. We achieve state-of-the-art performance, an improvement of 5.9% and 3.7% on the BCIC IV 2a and 2b datasets, respectively. The qualitative analysis of our learned features proves superior representational power over baseline models, a critical aspect in dealing with noisy EEG signals. Our findings demonstrate the efficacy of readily available baseline signals in enhancing performance, opening possibilities for simplified BCI systems in brain-based communication applications.