Pollution loads in the middle-lower Yangtze river by coupling water quality models with machine learning.

Journal: Water research
PMID:

Abstract

Pollution control and environmental protection of the Yangtze River have received major attention in China. However, modeling the river's pollution load remains challenging due to limited monitoring and unclear spatiotemporal distribution of pollution sources. Specifically, anthropogenic activities' contribution to the pollution have been underestimated in previous research. Here, we coupled a hydrodynamic-based water quality (HWQ) model with a machine learning (ML) model, namely attention-based Gated Recurrent Unit, to decipher the daily pollution loads (i.e., chemical oxygen demand, COD; total phosphorus, TP) and their sources in the Middle-Lower Yangtze River from 2014 to 2018. The coupled HWQ-ML model outperformed the standalone ML model with KGE values ranging 0.77-0.91 for COD and 0.47-0.64 for TP, while also reducing parameter uncertainty. When examining the relative contributions at the Middle Yangtze River Hankou cross-section, we observed that the main stream and tributaries, lateral anthropogenic discharges, and parameter uncertainty contributed 15, 66, and 19% to COD, and 58, 35, and 7% to TP, respectively. For the Lower Yangtze River Datong cross-section, the contributions were 6, 69, and 25% for COD and 41, 42, and 17% for TP. According to the attention weights of the coupled model, the primary drivers of lateral anthropogenic pollution sources, in descending order of importance, were temperature, date, and precipitation, reflecting seasonal pollution discharge, industrial effluent, and first flush effect and combined sewer overflows, respectively. This study emphasizes the synergy between physical modeling and machine learning, offering new insights into pollution load dynamics in the Yangtze River.

Authors

  • Sheng Huang
    Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
  • Jun Xia
    Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China. xiajun2003sz@aliyun.com.
  • Yueling Wang
    Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
  • Gangsheng Wang
    State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; Institute for Water-Carbon Cycles & Carbon Neutrality, Wuhan University, Wuhan 430072, China. Electronic address: wanggs@whu.edu.cn.
  • Dunxian She
    State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China; Institute for Water-Carbon Cycles & Carbon Neutrality, Wuhan University, Wuhan 430072, China.
  • Jiarui Lei
    Department of Civil and Environmental Engineering, National University of Singapore, 117578, Singapore.