The role of saliency maps in enhancing ophthalmologists' trust in artificial intelligence models.
Journal:
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
PMID:
39069106
Abstract
PURPOSE: Saliency maps (SM) allow clinicians to better understand the opaque decision-making process in artificial intelligence (AI) models by visualising the important features responsible for predictions. This ultimately improves interpretability and confidence. In this work, we review the use case for SMs, exploring their impact on clinicians' understanding and trust in AI models. We use the following ophthalmic conditions as examples: (1) glaucoma, (2) myopia, (3) age-related macular degeneration, and (4) diabetic retinopathy.