Windy events detection in big bioacoustics datasets using a pre-trained Convolutional Neural Network.

Journal: The Science of the total environment
PMID:

Abstract

Passive Acoustic Monitoring (PAM), which involves using autonomous record units for studying wildlife behaviour and distribution, often requires handling big acoustic datasets collected over extended periods. While these data offer invaluable insights about wildlife, their analysis can present challenges in dealing with geophonic sources. A major issue in the process of detection of target sounds is represented by wind-induced noise. This can lead to false positive detections, i.e., energy peaks due to wind gusts misclassified as biological sounds, or false negative, i.e., the wind noise masks the presence of biological sounds. Acoustic data dominated by wind noise makes the analysis of vocal activity unreliable, thus compromising the detection of target sounds and, subsequently, the interpretation of the results. Our work introduces a straightforward approach for detecting recordings affected by windy events using a pre-trained convolutional neural network. This process facilitates identifying wind-compromised data. We consider this dataset pre-processing crucial for ensuring the reliable use of PAM data. We implemented this preprocessing by leveraging YAMNet, a deep learning model for sound classification tasks. We evaluated YAMNet as-is ability to detect wind-induced noise and tested its performance in a Transfer Learning scenario by using our annotated data from the Stony Point Penguin Colony in South Africa. While the classification of YAMNet as-is achieved a precision of 0.71, and recall of 0.66, those metrics strongly improved after the training on our annotated dataset, reaching a precision of 0.91, and recall of 0.92, corresponding to a relative increment of >28 %. Our study demonstrates the promising application of YAMNet in the bioacoustics and ecoacoustics fields, addressing the need for wind-noise-free acoustic data. We released an open-access code that, combined with the efficiency and peak performance of YAMNet, can be used on standard laptops for a broad user base.

Authors

  • Francesca Terranova
    Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy. Electronic address: francesca.terranova@unito.it.
  • Lorenzo Betti
    Department of Network and Data Science, Central European University, Vienna, Austria.
  • Valeria Ferrario
    Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Chester Zoo, Caughall Road, Chester, UK.
  • Olivier Friard
    Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
  • Katrin Ludynia
    Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Bellville, South Africa.
  • Gavin Sean Petersen
    Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town, South Africa.
  • Nicolas Mathevon
    ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France. mathevon@univ-st-etienne.fr.
  • David Reby
    ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France.
  • Livio Favaro
    Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy.