AIMC Topic: South Africa

Clear Filters Showing 1 to 10 of 40 articles

Quantifying urban land cover imperviousness as input for flood simulation using machine learning: South African case study.

Water science and technology : a journal of the International Association on Water Pollution Research
The imperviousness of urban surfaces is an important parameter in simulating urban hydrological responses, but quantifying imperviousness can be challenging and time-consuming. In response, this study presents a new framework to efficiently estimate ...

Using Machine Learning to Improve Readmission Risk in Surgical Patients in South Africa.

International journal of environmental research and public health
Unplanned readmission within 30 days is a major challenge both globally and in South Africa. The aim of this study was to develop a machine learning model to predict unplanned surgical and trauma readmission to a public hospital in South Africa from ...

The Application of Machine Learning Algorithms to Predict HIV Testing in Repeated Adult Population-Based Surveys in South Africa: Protocol for a Multiwave Cross-Sectional Analysis.

JMIR research protocols
BACKGROUND: HIV testing is the cornerstone of HIV prevention and a pivotal step in realizing the Joint United Nations Program on HIV/AIDS (UNAIDS) goal of ending AIDS by 2030. Despite the availability of relevant survey data, there exists a research ...

A machine learning model to predict the risk factors causing feelings of burnout and emotional exhaustion amongst nursing staff in South Africa.

BMC health services research
BACKGROUND: The demand for quality healthcare is rising worldwide, and nurses in South Africa are under pressure to provide care with limited resources. This demanding work environment leads to burnout and exhaustion among nurses. Understanding the s...

Do machine learning methods solve the main pitfall of linear regression in dental age estimation?

Forensic science international
INTRODUCTION: Age estimation is crucial in forensic and anthropological fields. Teeth, are valued for their resilience to environmental factors and their preservation over time, making them essential for age estimation when other skeletal remains det...

Machine learning-based prediction of antibiotic resistance in Mycobacterium tuberculosis clinical isolates from Uganda.

BMC infectious diseases
BACKGROUND: Efforts toward tuberculosis management and control are challenged by the emergence of Mycobacterium tuberculosis (MTB) resistance to existing anti-TB drugs. This study aimed to explore the potential of machine learning algorithms in predi...

Medical imaging and radiation science students' use of artificial intelligence for learning and assessment.

Radiography (London, England : 1995)
INTRODUCTION: Artificial intelligence has permeated all aspects of our existence, and medical imaging has shown the burgeoning use of artificial intelligence in clinical environments. However, there are limited empirical studies on radiography studen...

Modelling bluetongue and African horse sickness vector (Culicoides spp.) distribution in the Western Cape in South Africa using random forest machine learning.

Parasites & vectors
BACKGROUND: Culicoides biting midges exhibit a global spatial distribution and are the main vectors of several viruses of veterinary importance, including bluetongue (BT) and African horse sickness (AHS). Many environmental and anthropological factor...

Windy events detection in big bioacoustics datasets using a pre-trained Convolutional Neural Network.

The Science of the total environment
Passive Acoustic Monitoring (PAM), which involves using autonomous record units for studying wildlife behaviour and distribution, often requires handling big acoustic datasets collected over extended periods. While these data offer invaluable insight...