Streak artefact removal in x-ray dark-field computed tomography using a convolutional neural network.
Journal:
Medical physics
Published Date:
Jul 16, 2024
Abstract
BACKGROUND: Computed tomography (CT) relies on the attenuation of x-rays, and is, hence, of limited use for weakly attenuating organs of the body, such as the lung. X-ray dark-field (DF) imaging is a recently developed technology that utilizes x-ray optical gratings to enable small-angle scattering as an alternative contrast mechanism. The DF signal provides structural information about the micromorphology of an object, complementary to the conventional attenuation signal. A first human-scale x-ray DF CT has been developed by our group. Despite specialized processing algorithms, reconstructed images remain affected by streaking artifacts, which often hinder image interpretation. In recent years, convolutional neural networks have gained popularity in the field of CT reconstruction, amongst others for streak artefact removal.