Automatic semantic segmentation of EHG recordings by deep learning: An approach to a screening tool for use in clinical practice.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jul 5, 2024
Abstract
BACKGROUND AND OBJECTIVE: Preterm delivery is an important factor in the disease burden of the newborn and infants worldwide. Electrohysterography (EHG) has become a promising technique for predicting this condition, thanks to its high degree of sensitivity. Despite the technological progress made in predicting preterm labor, its use in clinical practice is still limited, one of the main barriers being the lack of tools for automatic signal processing without expert supervision, i.e. automatic screening of motion and respiratory artifacts in EHG records. Our main objective was thus to design and validate an automatic system of segmenting and screening the physiological segments of uterine origin in EHG records for robust characterization of uterine myoelectric activity, predicting preterm labor and help to promote the transferability of the EHG technique to clinical practice.