A graph neural network approach for predicting drug susceptibility in the human microbiome.

Journal: Computers in biology and medicine
Published Date:

Abstract

Recent studies have illuminated the critical role of the human microbiome in maintaining health and influencing the pharmacological responses of drugs. Clinical trials, encompassing approximately 150 drugs, have unveiled interactions with the gastrointestinal microbiome, resulting in the conversion of these drugs into inactive metabolites. It is imperative to explore the field of pharmacomicrobiomics during the early stages of drug discovery, prior to clinical trials. To achieve this, the utilization of machine learning and deep learning models is highly desirable. In this study, we have proposed graph-based neural network models, namely GCN, GAT, and GINCOV models, utilizing the SMILES dataset of drug microbiome. Our primary objective was to classify the susceptibility of drugs to depletion by gut microbiota. Our results indicate that the GINCOV surpassed the other models, achieving impressive performance metrics, with an accuracy of 93% on the test dataset. This proposed Graph Neural Network (GNN) model offers a rapid and efficient method for screening drugs susceptible to gut microbiota depletion and also encourages the improvement of patient-specific dosage responses and formulations.

Authors

  • Maryam
    Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
  • Mobeen Ur Rehman
  • Irfan Hussain
  • Hilal Tayara
    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, South Korea. Electronic address: hilaltayara@jbnu.ac.kr.
  • Kil To Chong
    Division of Electronic Engineering, and Advanced Research Center of Electronics and Information, Chonbuk National University, Jeonju-Si 54896, South Korea. Electronic address: kitchong@jbnu.ac.kr.