A high hydrophobic moment arginine-rich peptide screened by a machine learning algorithm enhanced ADC antitumor activity.

Journal: Journal of peptide science : an official publication of the European Peptide Society
PMID:

Abstract

Cell-penetrating peptides (CPPs) with better biomolecule delivery properties will expand their clinical applications. Using the MLCPP2.0 machine algorithm, we screened multiple candidate sequences with potential cellular uptake ability from the nuclear localization signal/nuclear export signal database and verified them through cell-penetrating fluorescent tracing experiments. A peptide (NCR) derived from the Rev protein of the caprine arthritis-encephalitis virus exhibited efficient cell-penetrating activity, delivering over four times more EGFP than the classical CPP TAT, allowing it to accumulate in lysosomes. Structural and property analysis revealed that a high hydrophobic moment and an appropriate hydrophobic region contribute to the high delivery activity of NCR. Trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, could improve its anti-tumor activity by enhancing targeted delivery efficiency and increasing lysosomal drug delivery. This study designed a new NCR vector to non-covalently bind T-DM1 by fusing domain Z, which can specifically bind to the Fc region of immunoglobulin G and effectively deliver T-DM1 to lysosomes. MTT results showed that the domain Z-NCR vector significantly enhanced the cytotoxicity of T-DM1 against HER2-positive tumor cells while maintaining drug specificity. Our results make a useful attempt to explore the potential application of CPP as a lysosome-targeted delivery tool.

Authors

  • Ruo-Long Su
    Department of Applied Biology, East China University of Science and Technology, Shanghai, People's Republic of China.
  • Xue-Wei Cao
    Department of Applied Biology, East China University of Science and Technology, Shanghai, People's Republic of China.
  • Jian Zhao
    Key Laboratory of Intelligent Rehabilitation and Barrier-Free for the Disabled (Changchun University), Ministry of Education, Changchun University, Changchun 130012, China.
  • Fu-Jun Wang
    ECUST-FONOW Joint Research Center for Innovative Medicines, East China University of Science and Technology, Shanghai, People's Republic of China.