LC-SRM Combined With Machine Learning Enables Fast Identification and Quantification of Bacterial Pathogens in Urinary Tract Infections.

Journal: Molecular & cellular proteomics : MCP
PMID:

Abstract

Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24 h to 48 h of bacteria culture prior to MALDI-TOF species identification, we propose a culture-free workflow, enabling bacterial identification and quantification in less than 4 h using 1 ml of urine. After rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8 × 10 to 3 × 10 CFU/ml. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1 × 10 CFU/ml corresponding to an infection requiring antibiotherapy.

Authors

  • Clarisse Gotti
    Proteomics platform, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada.
  • Florence Roux-Dalvai
    Proteomics platform, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada.
  • Ève Bérubé
    Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Quebec, Canada.
  • Antoine Lacombe-Rastoll
    Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada; Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Quebec, Canada.
  • Mickaël Leclercq
    Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada.
  • Cristina C Jacob
    Thermo Fisher Scientific, San Jose, California, USA.
  • Maurice Boissinot
    Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada.
  • Claudia Martins
    Thermo Fisher Scientific, San Jose, California, USA.
  • Neloni R Wijeratne
    Thermo Fisher Scientific, San Jose, California, USA.
  • Michel G Bergeron
    Centre de Recherche en Infectiologie de l'Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec City, Québec, Canada.
  • Arnaud Droit
    Proteomics platform, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada; Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada; Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC, Canada. Electronic address: arnaud.droit@crchuq.ulaval.ca.