Machine learning and wearable sensors for automated Parkinson's disease diagnosis aid: a systematic review.
Journal:
Journal of neurology
Published Date:
Aug 14, 2024
Abstract
BACKGROUND: The diagnosis of Parkinson's disease is currently based on clinical evaluation. Despite clinical hallmarks, unfortunately, the error rate is still significant. Low in-vivo diagnostic accuracy of clinical evaluation mainly relies on the lack of quantitative biomarkers for an objective motor performance assessment. Non-invasive technologies, such as wearable sensors, coupled with machine learning algorithms, assess quantitatively and objectively the motor performances, with possible benefits either for in-clinic and at-home settings. We conducted a systematic review of the literature on machine learning algorithms embedded in smart devices in Parkinson's disease diagnosis.